Introducing Active Learning for Cnn under the Light of Variational Inference
نویسندگان
چکیده
One main concern of the deep learning community is to increase the capacity of representation of deep networks by increasing their depth. This requires to scale up the size of the training database accordingly. Indeed a major intuition lies in the fact that the depth of the network and the size of the training set are strongly correlated. However recent works tend to show that deep learning may be handled with smaller dataset as long as the training samples are carefully selected (let us mention for instance curriculum learning). In this context we introduce a scalable and efficient active learning method that can be applied to most neural networks, especially Convolutional Neural Networks (CNN). To the best of our knowledge, this paper is the first of its kind to design an active learning selection scheme based on a variational inference for neural networks. We also deduced a formulation of the posterior and prior distributions of the weights using statistical knowledge on the Maximum Likelihood Estimator. We describe our strategy to come up with our active learning criterion. We assess its consistency by checking the accuracy obtained by successive active learning steps on two benchmark datasets MNIST and USPS. We also demonstrate its scalability towards increasing training set size.
منابع مشابه
Learning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملVariational Message Passing
Bayesian inference is now widely established as one of the principal foundations for machine learning. In practice, exact inference is rarely possible, and so a variety of approximation techniques have been developed, one of the most widely used being a deterministic framework called variational inference. In this paper we introduce Variational Message Passing (VMP), a general purpose algorithm...
متن کاملImproving Variational Methods via Pairwise Linear Response Identities
Inference methods are often formulated as variational approximations: these approximations allow easy evaluation of statistics by marginalization or linear response, but these estimates can be inconsistent. We show that by introducing constraints on covariance, one can ensure consistency of linear response with the variational parameters, and in so doing inference of marginal probability distri...
متن کاملDeep Active Inference
This work combines the free energy principle from cognitive neuroscience and the ensuing active inference dynamics with recent advances in variational inference in deep generative models, and evolution strategies as efficient large scale, black box optimisation technique, to introduce the “deep active inference” agent. This agent minimises a variational free energy bound on the average surprise...
متن کاملLikelihood Almost Free Inference Networks
Variational inference for latent variable models is prevalent in various machine learning problems, typically solved by maximizing the Evidence Lower Bound (ELBO) of the true data likelihood with respect to a variational distribution. However, freely enriching the family of variational distribution is challenging since the ELBO requires variational likelihood evaluations of the latent variables...
متن کامل